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Abstract;

A number of methods for cleaning up noisy training sets to improve generalisation have been
proposed recently. Most of these methods perform well on artificially noisy data, but less well on real
world data where it is difficult to distinguish between noisy data points from valid but rare data points.

We propose here a statistically based method which performs well on real world data and also provides
a natural stopping criterion to terminate training.

Background:

Some researchers (White, 1989, Geman et al, 1992) have compared neural networks to non-
parametric estimators, As such, the limitations of neural networks can be explained by a well understood
problem in non-parametric statistics, namely the ‘bias and variance’ dilemma. Basically, the dilemma is
that to obtain a good approximation of an input-output relationship using some form of estimator,
constraints must be placed on the structure of the estimator and hence introduce bias, or a very large
number of examples of the. relationship must be used to construct the estimator.

Non-parametric statistics is concerned with model free estimation. When employed for classification
both parametric and non-parametric statistics seek to construct decision boundaries between the various
classes using a collection of training samples. Non-parametric methods differ from parametric methods
in that there is no particular structure assigned to the decision boundaries, a priori.

The obvious advantage of parametric techniques is efficiency. By setting the structure of the decision
boundary before estimation begins then fewer data points (or training examples) are required. This is
because there are (hopefully) a small number of parameters in the parametric model that require
estimation. Non-parametric or model free estimation potentially requires the estimation of an infinite
number of parameters and hence needs a much larger number of training examples. However, the
efficiency of parametric methods comes at a cost. If the actual form of the decision boundary departs
substantially from the assumed form, then parametric methods can result only, in the "best"
approximation for the decision boundary from within the adopted class of decision boundaries. Non-
parametric methods place no restriction on the class in which the decision boundary used in estimation
must reside.

Informally, consistency is the asymptotic convergence of the estimator to the object of estimation. In this
context asymptotic refers to the sample size or the number of patterns in the training set approaching
infinity. Most non-parametric algorithms are consistent for any regression [unction E{ylx]2. Indeed it
has been shown (White, 1989, and Gallant and White, 1988) that feed forward networks are consistent,
under appropriate conditions relating to the architecture of the network. Consistent in the sense that the
weights in the network will, in the limit of training set size approaching infinity, converge to the optimal
weights w*. Although this is an encouraging property, non-parametric methods can be very slow to
converge, and this has indeed been observed in the training times for neural networks.

Non-parametric estimators are guaranteed to perform optimally in the limit. In the context of neuoral
networks, they are only guaranteed to outperform other parametric estimators when the size of the
training set approaches infinity. For a finite sample, non-parametric estimators can be very sensitive to
the actunal realisations of (x,y) contained in the sample. This sensitivity results in an estimator that is
high in what is known as variance. The only way to control this variance is to introduce some a priori
structure into the estimator, that is to use parametric methods. This approach also has its pitfalls. In
complex classification problems, it is difficult to know the structure to impose on the estimator. As
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mentioned above, this can result in estimators that converge to an incorrect solution. This creates models
that are high in what is known as bias. The performance function used in back-propagation can be
readily decomposed into a bias and a variance term (Geman et al, 1992).

It is this dilemma between bias and variance that can explain the limitations of non-parametric learning.
Low bias and low variance requires large numbers of training examples. In situations where it is not
possible to obtain sufficiently large numbers of training examples it is necessary to allow some bias into
the neural network training procedure,

A number of methods have been used to introduce bias including:

 Pruning - by the removal of hidden units, the class of functions the network can produce is restricted
(eg Sietsma and Dow, 1991, Gedeon and Harris, 1991).

+ Dynamic node addition - network training starts with few units and thus high bias (eg Ash, 1989,
White, 1989, Harris & Gedeon, 1991).

 Extra terms in performance function - act as smoothing terms decreasing variance. The cost is an
increase in bias as details of the object of estimation Elyix] are blurred and lost.

» Cross validation - used to halt training, the network is restricted from building some decision
boundaries.

+ Qutlier removal - reduce the initial variance in the training set and thus improve the variance/bias
trade-off (Geman et at, 1992).

In the next section we will examine a number of outlier detection methods before introducing our own.
Outlier detection methods:

In terms of the statistical framework we use, there are several ways that a noisy training set can
occur. Either, the input pattern x does not obey the environmental probability law v, or the target pattern
y does not obey the conditional probability law y. Both these cases result in an atypical or irregular
mapping between input and output. In its quest to identify ¥, network training cannot help but be
adversely affected by the presence of these errors.

During the back error propagation step of the back-propagation algorithm, each weight is changed by an
amount which is a function of the discrepancy between actual network output and desired output. When
presented to the network, the erroneous patterns in the training set produce a high disparity between
desired and actual output. This produces large weight changes as the network tries to minimise the error
on these patterns. As most networks are trained until the mean square error over the training set is below
some threshold, these erroneous patterns will prolong training. This growth in training time greatly
increases the chance of the network overfitting the training set. So these inaccurate patterns seem to have
two possible effects on training:

« they force the network to slow its learning of the majority of patterns in order to learn those few
erroneous patterns, and
» they cause training time to escalate, thereby increasing the effect of overfitting.

A simple way of lessening the effect of these incorrect patterns is to remove them altogether, This
approach, though rudimentary in theory, is complicated in practice. Joines and White (1992) identify a
number of approaches, all of which have some problems:

Absolute Criterion Method

This method attempts to minimise the absolute value of the error as opposed to normal back-propagation
which attempts to minimise the mean square error. The outliers in the training set will have larger errors
relative to the rest of the training set. This method does not propagate these large errors by design,
consequently the changes in weight are smaller. This method may allow backpropagation to find simple
models. The obvious problem with the Absolute Criterion Model is of stability or oscillation. Being
parabolic, very small weight changes are needed to minimise the error function for normal back
propagation, when the error is near zero.

This method propagates the same error throughout training, resulting in relatively large weight changes,
which prevent the network from reaching a stable minimum. It is possible to revert to normal back-
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propagation error function in the region of small error, to alleviate the problem of oscillation, since the
normal backpropagation function is very smooth around the origin,

Least Median Squares (LMS)

This method seeks to minimise the median of the residual errors, The procedure involves calculating the
mean square error for each pattern in the training set then back-propagating the median of those errors.

This method is similar to batch learning in normal back-propagation and shows the same slowness in
convergence.

Least Trimmed Squares (LTS)

This method is designed to speed up convergence of normal back-propagation training. The basic
premise is to minimise the mean square error over only a percentage of the training set. At every 5th
epoch all the patterns in the training set are sorted in ascending order based on their mean square error.
The patterns connected with the lowest mean square errors are used to train the network for the next 5
epochs. The process is then repeated and a new subset of the full training set is selected as training
patterns. This method may result in better generalisation because the outliers in the training set will never
be used to train the network, because they produce large mean square errors, As a result, the weights
will never adjusted to fit these outliers.

Joines and White (1992) tested the above method on a clean data set with noise specifically introduced
into the training set (but not the test set). The result was excellent, with the mean square error over the
training set increasing and decreasing over the test set - the reverse of the usual case. There are some
major problems, Firstly in the real world our test set would also contain noise. Secondly the details of
the method requires knowing (or assuming) a priori how many outliers are present in the training set.

Bimodal distribution removal:

This section introcluces our method for outlier detection called Bimodal Distribution Removal
(BDR), which addresses all the
12 T T . . . weaknesses of the other methods
indicated in the previous section.

10 r In order to investigate the behaviour of
outliers in the training set during training,
8F . frequency distributions of the errors for
all patterns in the training set were
produced every 50 epochs of training.
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for a majority of the training set.
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04 045 05 055 06 06 07 0% remains patterns with relatively high
Bmor i ) error. This creates an almost bimodal
Figure 1: Error distribution at epoch 0 error distribution, with the low error peak
containing patterns the network has learnt
well, and the high error peak containing the outliers. Figure 2 also reveals that the distribution is only
approximately bimodal. There exist patterns with errors which are between the two peaks. These
patterns are being slowly learnt by the network and shall hereafter be referred to as slow coaches.

From the two peaks in the error distribution it is clear that the network can identify outliers itself. The
network is learning Efyix], the expected value of y given x. The patterns that appear in the high error
peak are outliers in the sense that they are not what the network ‘expects’ y to be given x.

It would be difficult and time consuming to identify a bimodal error distribution during training.
Fortunately, a measure of the variance will achieve the same effect. As mentioned above, the variance
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vy, of the error distribution is quite large
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] i patterns, v drops sharply (see Figure 3).

40 This is due to the lower error peak
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T two error peaks have formed, so the
; 50 ) removal of outliers can begin, All this
wH 4 usually occurs very quickly, normally

within 200-500 epochs.The next step is to

150 ’ decide which patterns to remove, Patterns

10 . should not be removed too quickly, as

5 ] those patterns with midrange errors could

- —, eventually be learnt by the network. In

0 : e choosing which patterns to remove the

0 01 02 03 04 05 06 07 08 09 | first step is to calculate the mean of the

Figure 2: Error distribution at eg(f)gh 500 errors for all the patterns in the training set

Sis. Due to the dominance of the low
error peak (Figure 2) § will be very
low, but greater than nearly all errors in the low error peak (due to the presence of the high error peak).
Those patterns in the low error peak are not outlier candidates. In order to isolate potential outliers, all

those patterns with error greater than s are taken from the training set.

This subset will contain the patterns from the high error peak (outliers) and the slow coaches between
the two peaks. The dominance of the outliers in the subset will skew the distribution towards the
outliers, The mean § and standard deviation o, of this skewed distribution is calculated, §s will be
heavily influenced by the outliers and hence will be relatively high. From these two statistics is possible
to decides which patterns to permanently remove {rom the training set. Those patterns with

eITor = § 5 + 004 where 0 <a<1

are removed. BDR is intentionally conservative in its removal of patterns to give the network
opportunity to learn the slow coaches. It is repeated every 50 epochs in order for the network to learn
the features of each new training set.

Should BDR be continued indefinitely, eventually all the patterns would be removed from the training
set. This is undesirable because as the training set becomes smaller the network is devoting 50 epochs of
training to a reduced set of examples, thus potentially dramatically increasing the overfitting effect.
Removal of the outliers from the training set causes the high error peak to shrink, resulting in a lower
s and a very much lower w. It is v that can be used as a halting condition for training. Once v is
below a constant (typically 0.01) training is halted.

BDR attempts to address all the weaknesses of the outlier detection and removal methods discussed in
the previous section in that:

+ pattern removal does not start until the network itself has identified the outliers,

« the number of patterns removed is not hard wired, but instead is data driven,

* patterns are removed slowly, to give the network ample time to extract information from them, and

* a halting criterion naturally evolves preventing overfitting - results in significantly faster training time,

The remainder of this paper describes an experiment to gauge the effectiveness of BDR and some of the
outlier detection methods presented in the previous section. The methods will be compared to normal
back propagation, using a real world data set. The effectiveness of each method will be measured by the
method's ability to control both bias and variance.

Experiment:

The data used in this experiment comprises student information, assessment and final mark for a
sample of students from a first year Computer Science subject at The University of New South Wales.
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Figure 5: Heuristic Reduction

The sample contains the marks for 150
students. The exam mark is excluded to
introduce noise, the task of the network is to
predict the final grade (HD, D, CR, P) based
on the 40% of the mark which comes from
assessment prior to the exam. For further
details see Gedeon and Bowden (1992). A
student’s assessment may not reflect their
grade at one extreme by copying assignments
and so on to get a good mark during the year
but not understand the material and hence do
very badly in the final exam, or at the other
extreme expend very little effort during the
year and achieve low course assessment marks
but study very hard for the final exam and do
well, An analysis of the data indicates that
these two cases are relatively rare, of the order
of 10%, and can be classed as noise.

Normal backpropagation is usually classified
as a high variance / low bias estimator. As
such, normal backpropagation will control
variance if the network does not begin
overfitting the training set. Overfitting can
happen if as in this experiment, the training set
is noisy.

The network structure is 14-5-4, being input,
hidden and output units, The experiment was
repeated with a 14-10-4 network with no
significant difference in the results.

Fifty patterns were set aside as a test set and
were never used in training. The remaining
100 patterns were used to create 50 sets of 70
pattern training sets at random, Fifty networks
for each of the Absolute Criterion, LMS, LTS,
Heuristic Reduction (described in Gedeon and
Bowden, 1992), and Bimodal Distribution
Removal were trained, as well as normal back-
propagation. The integrated bias and variance
were then calculated. The results for the latter
4 cases are shown. The Absolute Criterion and
LMS methods performed less well than the
LTS method and are not shown.

Least Trimmed Squares provides the necessary
control of variance at the expense of higher
bias. This control of variance becomes
significant if training is continued for a long
period of time (the overfitting effect increases).
The LTS method to control variance is hard
wired and requires a priori knowledge of the
amount of noise in the training set,

Heuristic Pattern Removal produces an almost
contradictory result. The asymptotic nature of
neural networks indicates that network
performance becomes optimal as the size of the
training set approaches infinity. Yet,
measurements of bias and variance for training
on a half size training set show the Heuristic
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method performs as well as the Bimodal Distribution Removal method. Bias and variance are very
sensitive to the complexity of the data and by how much the training set is reduced every 1,000 epoch.
This can be seen by the slope of the variance plot in Figure 5 - the Heuristic method leads to the most
uncontrolled increase in variance of all the methods. The problem remains in determining the ‘correct’
time to halt training,

0.65 T T Y T T T . Bimodal Distribution Removal provides a
e e similar control of variance as LTS. It is an
o6k . puus biasShidl” = improvement over LTS since both bias and
prs,_varianceShid” ™ variance are lower during training, and a data

055 F . driven halting condition results,
o5t 1 The valvues for bias in the LTS and BDR
methods for this data set in comparison to
045 . normal back-propagation indicates that even

theugh these methods perform well, the nois

04 data points are being useful in this case. This
means our implicit assumption that the

035 probability law v is approx1mately degenerate
is barely valid. This points to the requirement

03 for appropriate choice of a data set. An
“ . , . . . . . independant statistical analysis of the data was

025 commissioned, and found there was little

0 500 1000 1500 2000 2500 3000 3500 4000 | correlation between assessment data and final

. . . Epoch number grade. Of course, the choice of data for the

Figure 6: Bimodal Distribution Removal purpose of demonstrating a new method such
' ‘difficult’ data is ideal.

Conclusion:

The choice of training method depends on goal of the user. If a training set is known to be very noisy
then an outlier detection method should be employed. However if the training examples are ‘clean’ and
large in number, normal backpropagation will best approximate the regression Efylx]. If the test set is
known to be clean, then the LTS method can be used,

The BDR method has been shown to perform as well as existing methods including on ‘real’ noisy data,
with none of the disadvantages. The method can improve generalisation by removing sources of n01se,
speed up trammg by reducing the number of patterns, and provides a natural stopping criterion to
terminate training,
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